Applied Physics & Electro- Mechanical Fundamentals

Course Code	Credit Hours
PHY-113	2-1

Course Description

This course equips the students with the applied concepts of Applied Physics and Electro- Mechanical Fundamentals. By the course completion, students would have developed a good understanding of the fundamentals covering vectors, applied mechanics, electrostatics, waves and oscillations, electrical elements and circuits, relevant electronics in Civil Engineering testing, thermodynamics, HVAC, and renewable energy systems.

Text Book:

- 1. Physics, By: Halliday, Resnick & Krane, Edition: 10th Edition (or latest edition).
- 2. University Physics, BY: Hugh D. Young and R.A. Freedman, (latest edition).
- 3. Physics for Scientist & Engineers, by Serway, Jewett (latest edition).
- 4. Basic Electrical Engineering by Del Toro, Prentice Hall (latest edition).
- 5. Basic Electrical Technology by T.K. Nagasarkar & Suhkija, (latest edition).
- 6. Theraja, B.L. Electrical Technology, S. Chand publishing (latest edition).
- 7. Thermodynamics 'An Engineering Approach' By Yunus A. Cengel, Michael A. Boles
- 8. Trane Air Conditioning Manual
- 9. Electrical Technology by B.L.Theraja

Reference Book:

Prerequisites. Nil

ASSESSMENT SYSTEM FOR THEORY

	Without Project (%)	With Project/Complex Engineering Problems (%)	
Quizzes	15	10-15	
Assignments	10	5-10	
Mid Terms	25	25	
Project	-	5-10	
End Semester Exam	50	45-50	

ASSESSMENT SYSTEM FOR LAB

Lab Work/ Psychomotor Assessment/ Lab Reports	70%
Lab Project/ Open Ended Lab Report/ Assignment/ Quiz	10%
Final Assesment/ Viva	20%

Teaching Plan

Week No	Topics/Learning Outcomes			
1	Review of Vectors, Gradient of Scaler field, Divergence and Curl of Vector Field.			
	Application of Newton's law			
2	Tension, Normal & Frictional Forces. Dynamics of uniform circular motion,			
	kinematics of rotational motion related problem solving.			
3	Simple Harmonic Motion and SHM energy.			
4	Damped & forced oscillations. Oscillations & wave propagation.			
5-6	Work-Energy, Energy & power carried by waves. Reflection, interference & diffraction.			
7	Rotational inertia of solid bodies.			
8	Nuclear Radioactive decay & radioactive dating, radiation detection instruments.			
9	Mid Semester Exam			
10-11	Introduction to Mechanical Technology:			
	Basic Concepts, Laws of thermodynamics & their applications. Thermodynamic			
	air cycles, mean effective pressure.			
12-13	Air-Conditioning:			
	Introduction, Heating & cooling load & its calculations, comfort charts, outline of			
	air-conditioning in buildings, natural ventilation & insulating materials.			
	Electrical Elements & Circuits:			
14-15	Electrical units, electrical current Ohm's law, Kirchhoff's law, Intro to node			
	voltage & loop current methods.			
	Wiring & illumination:			
16	Principles of house wiring & industrial wiring, introduction to illumination, and			
	earthing.			
17-18	End Semester Exam			

Practical

Experiment No	Description
1	To Verify Boyle's Law
	To calculate the enthalpy of air blown in vapor. To calculate the cooling
2	capacity of air cooler. To calculate the sensible heat/ rise in
	temperature between room intake & outlet.
3	To verify the Kirchhoff's law & Ohm's law
4	Mini-launcher (Exp 1, 2, 3)
5	Mini-launcher (Exp 4,6)
6	Compound Pendulum